201 research outputs found

    Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition

    Get PDF
    Fe deficiency compromises both human health and plant productivity. Thus, it is important to understand plant Fe acquisition strategies for the development of crop plants which are more Fe-efficient under Fe-limited conditions, such as alkaline soils, and have higher Fe density in their edible tissues. Root secretion of phenolic compounds has long been hypothesized to be a component of the reduction strategy of Fe acquisition in non-graminaceous plants. We therefore subjected roots of Arabidopsis thaliana plants grown under Fe-replete and Fe-deplete conditions to comprehensive metabolome analysis by gas chromatography-mass spectrometry and ultra-pressure liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. Scopoletin and other coumarins were found among the metabolites showing the strongest response to two different Fe-limited conditions, the cultivation in Fe-free medium and in medium with an alkaline pH. A coumarin biosynthesis mutant defective in ortho-hydroxylation of cinnamic acids was unable to grow on alkaline soil in the absence of Fe fertilization. Co-cultivation with wild-type plants partially rescued the Fe deficiency phenotype indicating a contribution of extracellular coumarins to Fe solubilization. Indeed, coumarins were detected in root exudates of wild-type plants. Direct infusion mass spectrometry as well as UV/vis spectroscopy indicated that coumarins are acting both as reductants of Fe(III) and as ligands of Fe(II)

    Incremental Updates on Compressed XML

    Get PDF

    OnlineRePair: A Recompressor for XML Structures

    Get PDF

    Ultracold chemical reactions of a single Rydberg atom in a dense gas

    Full text link
    Within a dense environment (ρ≈1014 \rho \approx 10^{14}\,atoms/cm3^3) at ultracold temperatures (T<1 ΌKT < 1\,\mu{}\text{K}), a single atom excited to a Rydberg state acts as a reaction center for surrounding neutral atoms. At these temperatures almost all neutral atoms within the Rydberg orbit are bound to the Rydberg core and interact with the Rydberg atom. We have studied the reaction rate and products for nSnS 87^{87}Rb Rydberg states and we mainly observe a state change of the Rydberg electron to a high orbital angular momentum ll, with the released energy being converted into kinetic energy of the Rydberg atom. Unexpectedly, the measurements show a threshold behavior at n≈100n\approx 100 for the inelastic collision time leading to increased lifetimes of the Rydberg state independent of the densities investigated. Even at very high densities (ρ≈4.8×1014 cm−3\rho\approx4.8\times 10^{14}\,\text{cm}^{-3}), the lifetime of a Rydberg atom exceeds 10 Όs10\,\mu\text{s} at n>140n > 140 compared to 1 Όs1\,\mu\text{s} at n=90n=90. In addition, a second observed reaction mechanism, namely Rb2+_2^+ molecule formation, was studied. Both reaction products are equally probable for n=40n=40 but the fraction of Rb2+_2^+ created drops to below 10 \,% for n≄90n\ge90.Comment: 13 pages, 13 figure

    The dependence of optical polarisation of blazars on the synchrotron peak frequency

    Get PDF
    The RoboPol instrument and the relevant program was developed in order to conduct a systematic study of the optical polarisation variability of blazars. Driven by the discovery that long smooth rotations of the optical polarisation plane can be associated with the activity in other bands and especially in gamma rays, the program was meant to investigate the physical mechanisms causing them and quantify the optical polarisation behaviour in blazars. Over the first three nominal observing seasons (2013, 2014 and 2015) RoboPol detected 40 rotations in 24 blazars by observing a gamma–ray-loud and gamma–ray-quite unbiassed sample of blazars, providing a reliable set of events for exploring the phenomenon. The obtain datasets provided the ground for a systematic quantification of the variability of the optical polarisation in such systems. In the following after a brief review of the discoveries that relate to the gamma-ray loudness of the sources we move on to discuss a simple jet model that explains the observed dichotomy in terms of polarisation between gamma–ray-loud and quite sources and the dependence of polarisation and the stability of the polarisation angle on the synchrotron peak frequency

    SMASIS2012-8213 HIGH SPEED SHAPE MEMORY ALLOY ACTIVATION

    Get PDF
    ABSTRACT Due to their ability to change into a previously imprinted actual shape through the means of thermal and electrical activation, shape memory alloys (SMA) are suitable as actuators. To apply these smart materials to a wide range of high-speed applications like valves or safety systems, an analysis of the application potential is required. The detection of inner electrical resistance of SMA actuators allows gauging the actuator&apos;s stroke. By usage of a microcontroller a smart system without any hardware sensors can be realized which protects the system from overheating during high-current activation. The publication concentrates on different experimental data on high-speed actuation under 20ms and the potentials in the field of industrial applications. The paper gives an overview about different controlling methods for SMAactuators, experiments concerning the resistance behavior of SMA and the development of systems using a resistance control feedback signal during high-speed activation

    Ncs2* mediates in vivo virulence of pathogenic yeast through sulphur modification of cytoplasmic transfer RNA.

    Get PDF
    Fungal pathogens threaten ecosystems and human health. Understanding the molecular basis of their virulence is key to develop new treatment strategies. Here, we characterize NCS2*, a point mutation identified in a clinical baker's yeast isolate. Ncs2 is essential for 2-thiolation of tRNA and the NCS2* mutation leads to increased thiolation at body temperature. NCS2* yeast exhibits enhanced fitness when grown at elevated temperatures or when exposed to oxidative stress, inhibition of nutrient signalling, and cell-wall stress. Importantly, Ncs2* alters the interaction and stability of the thiolase complex likely mediated by nucleotide binding. The absence of 2-thiolation abrogates the in vivo virulence of pathogenic baker's yeast in infected mice. Finally, hypomodification triggers changes in colony morphology and hyphae formation in the common commensal pathogen Candida albicans resulting in decreased virulence in a human cell culture model. These findings demonstrate that 2-thiolation of tRNA acts as a key mediator of fungal virulence and reveal new mechanistic insights into the function of the highly conserved tRNA-thiolase complex
    • 

    corecore